

Model Answer Set- II Std. – 10th EM/Semi Subject – Algebra

Time : 2 Hrs.

Marks: 40

 $\frac{2}{2}$ (2, 2)

Q.1	A) Choose the correct a	lternative.				
	1) B 2) B 3) B	4) A				
	B) Solve the following questions.					
1.	Rate of $GST = 12\%$					
	\therefore Rate of CGST = Rate of	of SGST = $\frac{\text{Rate of GST}}{2} = \frac{1}{2}$	$\frac{2}{2} = 6\%$			
	\therefore Rate of CGST = Rate of SGST = 6%					
2.	$P(A) = \frac{n(A)}{n(A)}$					
	n(S)					
	$\therefore \frac{s}{4} = \frac{s}{n(S)}$					
	\therefore n(S) = $\frac{6 \times 4}{2}$ = 8					
3.	$x^2 + 5x = -(3 - x)$					
	$\therefore x^2 + 5x = -3 + x$					
	$\therefore x^2 + 5x - x + 3 = 0$					
	$\therefore x^2 + 4x + 3 = 0$					
4.	$t_n = a + (n-1)d$					
	= 7 + (n - 1)6					
	= 7 + 6n - 6					
	= 6n + 1					
0.0	= 6n + 1	• • • • • • • • • • • • • • • • • • • •				
Q.2	= 6n + 1 A) Complete the follow	ing activities. (Any two))			
Q.2 1.	= $6n + 1$ A) Complete the follow Ans: $a = 2$, $d = \boxed{2}$, $t_n = 1$	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: $a = 2, d = 2, t_n = 1$ $t_n = a + (n-1) d$	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 t _n = a + (n-1) d ∴ 148 = 2 + (n-1)2	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 $t_n = a + (n-1) d$ ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 $t_n = a + (n-1) d$ ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 $t_n = a + (n-1) d$ ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148 ∴ n = $\frac{148}{2} = 74$	ing activities. (Any two) 48)			
Q.2 1.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 t _n = a + (n - 1) d ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148 ∴ n = $\frac{148}{2}$ = 74	ing activities. (Any two) 48)			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 t _n = a + (n - 1) d ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148 ∴ n = $\frac{148}{2}$ = 74 S = {[A,B,C,D,E,O]}	ing activities. (Any two) 48)			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 t _n = a + (n - 1) d ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148 ∴ n = $\frac{148}{2}$ = 74 S = {[A,B,C,D,E,O]} n(S) = 6	ing activities. (Any two) 48)			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: $a = 2$, $d = \boxed{2}$, $t_n = 1$: $t_n = a + (n-1)d$ $\therefore 148 = \boxed{2 + (n-1)2}$ $\therefore 146 = 2n - \boxed{2}$ $\therefore 2n = 146 + 2 = 148$ $\therefore n = \frac{148}{2} = \boxed{74}$ $S = \{ \boxed{A,B,C,D,E,O} \}$ $n(S) = \boxed{6}$ $M = \{ \boxed{A,E,O} \}$	ing activities. (Any two) 48)			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: $a = 2, d = [2], t_n = 1$: $t_n = a + (n-1)d$ $\therefore 148 = [2 + (n-1)2]$ $\therefore 146 = 2n - [2]$ $\therefore 2n = 146 + 2 = 148$ $\therefore n = \frac{148}{2} = [74]$ $S = \{[A,B,C,D,E,O]\}$ n(S) = [6] $M = \{[A,E,O]\}$ n(M) = [3]	ing activities. (Any two) 48)			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: a = 2, d = 2, t _n = 1 $t_n = a + (n-1)d$ ∴ 148 = 2 + (n - 1)2 ∴ 146 = 2n - 2 ∴ 2n = 146 + 2 = 148 ∴ n = $\frac{148}{2} = 74$ S = {[A,B,C,D,E,O]} n(S) = 6 M = {[A,E,O]} n(M) = 3 X	ing activities. (Any two) 48 —4	5			
Q.2 1. 2.	= 6n + 1 A) Complete the follow: Ans: $a = 2, d = [2], t_n = 1$: $t_n = a + (n-1)d$ $\therefore 148 = [2 + (n-1)2]$ $\therefore 146 = 2n - [2]$ $\therefore 2n = 146 + 2 = 148$ $\therefore n = \frac{148}{2} = [74]$ $S = \{[A,B,C,D,E,O]\}$ n(S) = [6] $M = \{[A,E,O]\}$ n(M) = [3]	ing activities. (Any two) 48 -4 0	5 3			

B) Solve the following questions. (Any four)1. Let the first term of the A.P. be a and the common difference be d.

According to the given condition,

 $t_{17} = t_{10} + 7$ $\therefore a + (17 - 1)d = a + (10 - 1)d + 7 \dots [\because t_n = a + d]$ $\therefore a + 16d = a + 9d + 7$ $\therefore a + 16d - a - 9d = 7$ $\therefore 7d = 7$ $\therefore d = \frac{7}{7} = 1$

∴ The common difference is 1.

$$\therefore 100x = 18(1770 - x)$$

 $\therefore 100x = 18 \times 1770 - 18x$ $\therefore 100x + 18x = 18 \times 1770$ $\therefore 118x = 18 \times 1770$ $\therefore x = \frac{18 \times 1770}{118} = 18 \times 15 = 270$ ∴ GST = **Rs. 270** \therefore Taxable value of remote controlled toy car = Rs.(1770 - x) = Rs. (1770 - 270) = Rs. 1500 But, CGST = SGST = $\frac{GST}{T}$ $\therefore \text{ CGST} = \text{SGST} = \frac{270}{2}^2 = \text{Rs. 135}$ 2. By filling the following boxes find the quadratic equation whose roots are $1 - 3\sqrt{5}$ and $1 + 3\sqrt{5}$. Let $\alpha = 1 + 3\sqrt{5}$ and $\beta = 1 + 3\sqrt{5}$ $\therefore \alpha + \beta = 2$ $1 - 9 \times 5$ and $\propto \beta = -44$ \therefore The required quadratic equation is $\mathbf{x}^2 - (\boldsymbol{\alpha} + \boldsymbol{\beta})\mathbf{x} + \alpha \boldsymbol{\beta} = 0$ $\therefore \mathbf{x}^2 - 2\mathbf{x} - 44 = 0$ **B)** Solve the following questions. (Any two) Sol: kx(x-2)+6=01. $kx^2 - 2kx + 6 = 0$... Comparing the above equation with $ax^2 + bx + c = 0$, we get a = k, b = -2k, c = 6 $\Delta = b^2 - 4ac$... $=(-2k)^2-4\times k\times 6$ $=4k^2-24k$ $\Delta = 4k (k-6)$... Since, the roots are real and equal. ... $\Delta = 0$... 4k(k-6) = 0k(k-6) = 0... k = 0 or k - 6 = 0... But, if k = 0 then quadratic coefficient becomes zero. $k \neq 0$... k = 6... 2. Cumulative Class Frequency Continuous **Average Speed of** (No. of vehicles) frequency classes Vehicles (Km/hr) (less than) fi 60 - 6410 10 59.5 - 64.5 34 44 65 - 69 64.5 - 69.570 - 7455 $99 \rightarrow cf$ 69.5 - 74.5 75 - 79 74.5 - 79.5 $85 \rightarrow f$ 184

80 - 8479.5 - 84.510 194 84.5 - 89.5 85 - 896 200 Total 200 _

Here, total frequency = $\Sigma f_i = N = 200$

$$\frac{N}{2} = \frac{200}{2} = 100$$

...

Cumulative frequency which is just greater than (or equal) to 100 is 184.

 \therefore The median class is 74.5 – 79.5 Now, L = 74.5, f = 85, cf = 99, h = 5 $\therefore \text{ Median} = L + \left[\frac{\frac{N}{2} - cf}{f}\right] h$ $=74.5+\left(\frac{100-99}{85}\right)5$ $=74.5 + 0.059 = 74.559 \approx 75$ \therefore The median of the given data is 75 km/hr (approx.). Sol: There are 52 playing cards. 3. ... n(S) = 52Let A be the event that the card drawn is a black card. i. *.*. n(A) = 26 \therefore P(A) = $\frac{n(A)}{n(S)} = \frac{26}{52} = \frac{1}{2}$ ii. Let B be the event that the card drawn is a face card. \therefore n(B) = 12 \therefore P(B) = $\frac{n(B)}{n(S)} = \frac{12}{52} = \frac{3}{13}$ iii. Let C be the event that the card drawn bears a number between 2 to 5 including 2 and 5. There are four such cards in each of the four suits. \therefore n(C) = 4 + 4 + 4 + 4 = 16 $P(C) = \frac{n(C)}{n(S)} = \frac{16}{52} = \frac{4}{13}$ The instalments are in A.P. 4. Sol: Amount repaid in 12 instalments (S12) = Amount borrowed + total interest = 8000 + 1360 $S_{12} = 9360$... Number of instalments (n) = 12Each instalment is less than the preceding one by $\overline{\xi}$ 40. d = -40... $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $S_{12} = \frac{12}{2} [2a + (12 - 1)(-40)]$ *.*.. 9360 = 6[2a + (11)(-40)]... 9360 = 6(2a - 440)... $\frac{9360}{6} = 2a - 440$... 1560 = 2a - 440... 1560 + 440 = 2a*.*.. 2000 = 2a*.*.. $a = \frac{2000}{2}$ a = 1000Amount of the first instalment is ₹ 1000. ... Solve the following questions. (Any two) **Q.4** 1. Sol: Since, the given table has cumulative frequency distribution, we convert it into frequency distribution table. Here, the number of men having income less than ₹100 are 12 and those less than ₹200 are 28

:. Number of men having income between 0 and 100 = 12 - 0 = 12and number of men having income between 100 and 200 = 28 - 12 = 16Similarly, number of men having income between 200 - 300, 300 - 400 and 400 - 500 are calculated as follows:

Daily income (in (°)	Number of men (fi)	Class mark (xi)	$d_i = x_i - A$ $d_i = x_i - 250$	$u_i = \frac{d_i}{g}$ $= \frac{d_i}{100}$	filli
0 - 100	12	50	-200	-2	-24
100 - 200	28 - 12 = 16	150	-100	-1	-16
200 - 300	34 - 28 = 6	250	0	0	0
300 - 400	41 - 34 = 7	350	100	1	7
400 - 500	50 - 41 = 9	450	200	2	18
Total	$\sum f_i = 50$				$\sum f_i u_i = -15$

By using step-deviation method,

$$\overline{\mathbf{X}} = \mathbf{A} + \mathbf{g} \times \left(\frac{\sum f_i u_i}{\sum f_i}\right)$$

= 250 + 100 × $\left(\frac{-15}{50}\right)$
= 250 - 30
= ₹ 220

The mean of daily income is ₹ 220. *.*..

2. 4x + 3y = 24Sol:

3y = 4x + 244x + 24

The point of intersection of given lines is (0, 8). *.* . From the graph, we get $\triangle ABC$, where BO is the height of the triangle and AC is the base. Now, l(AC) = 12 cm and l(BO) = 8 cm

$$\therefore \quad \text{Area of } \Delta \text{ABC} = \frac{1}{2} \times l(\text{AC}) \times l(\text{BO}) = \frac{1}{2} \times 12 \times 8$$

Area of $\triangle ABC = 48 \text{ cm}^2$ *.*..

3.

- Let the radius of the first circle be x m.
- the radius of the second circle = (x + 3) m
- According to the given condition,
- $\pi x^2 + \pi (x+3)^2 = 89\pi$
- ∴ $\pi[x^2 + (x+3)^2] = 89\pi$ ∴ $x^2 + (x+3)^2 = 89$
- $x^2 + x^2 + 6x + 9 = 89$
- $\therefore \quad 2x^2 + 6x + 9 89 = 0$
- $\therefore \quad 2x^2 + 6x 80 = 0$
- $\therefore \quad 2(x^2+3x-40)=0$
- $\therefore \qquad x^2 + 3x 40 = 0$
- $\therefore \qquad x^2 + 8x 5x 40 = 0$
- $\therefore \quad x(x+8) 5(x+8) = 0$
- $\therefore \quad x+8=0 \quad \text{or} \quad x-5=0$
- \therefore x = -8 or x = 5
 - But, x = -8 is not possible because radius cannot be negative.
- $\therefore x = 5$
 - Radius of the other circle = (x + 3) = 5 + 3 = 8 m
- \therefore Radius of first circle = 5 m,
 - Radius of second circle = 8 m

Q.5 Solve the following questions. (Any one)

- 1. a. The modal class is 74.5 79.5 because the maximum frequency is 82.
 - b. Total frequency = N = 200
 - $\therefore \frac{N}{2} = \frac{200}{2} = 100$

2.

Cumulative frequency which is just greater than (or equal) to 100 is 102.

- : The median class is 69.5 74.5
- c. 44 is the cumulative frequency of the class preceding the median class.
- d. Class interval (h) = upper limit of median class lower limit of median class = 74.5 69.5 = 5

Sol:
$$D_x = \begin{vmatrix} 9 & -4 \end{vmatrix} = 44 - 9a$$

 $D_y = \begin{vmatrix} 3 & -11 \\ b & 9 \end{vmatrix} = 27 + 11b$
 $D = \begin{vmatrix} 3 & 2 \\ 7 & -4 \end{vmatrix} = -12 - 14 = -26$
By Cramer's rule, we get

 $x = \frac{D_x}{D}$ and $y = \frac{D_y}{D}$

- :. $-1 = \frac{44 9a}{-26}$ and $-4 = \frac{27 + 11b}{-26}$
- \therefore 44 9a = 26 and 104 = 27+11b
- \therefore 9a = 18 and 11b = 77

$$\therefore$$
 a = 2 and **b** = 7

Now,
$$D_x = \begin{vmatrix} -11 & 2 \\ 9 & -4 \end{vmatrix}$$
, $D_y = \begin{vmatrix} 3 & -11 \\ 7 & 9 \end{vmatrix}$, $D = \begin{vmatrix} 3 & 2 \\ 7 & -4 \end{vmatrix}$

Comparing these determinants with

$$D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}, D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}, D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \text{ we get}$$
$$a_1 = 3, b_1 = 2, c_1 = -11 \text{ and}$$
$$a_2 = 7, b_2 = -4, c_2 = 9$$
The required equations are

The required equations are

3x + 2y = -11 and 7x - 4y = 9